A FLAVANONE FROM LANNEA ACIDA

SARWAT SULTANA and M. ILYAS

Department of Chemistry, Aligarh Muslim University, Aligarh 202001 (U.P.), India

(Revised received 20 August 1985)

Key Word Index—Lannea acida; Anacardiaceae; 6,7,2,2-dimethylchromeno-8,γ,γ-dimethylallyl flavanone.

Abstract—Chromatographic separation of the acetone extract of *Lannea acida* leaves resulted in the separation of a new flavanone, 6.7,2.2-dimethylchromeno-8.9,9.4-dimethylallyl flavanone.

INTRODUCTION

Lannea acida is a small deciduous tree. It is an important drug in the indigenous system of treatment in North Nigeria. The leaves are used as a febrifuge and have been described to be useful in the treatment of gout and rheumatism [1]. No work has been reported on this medicinally important plant. In this communication, we deal with the isolation of a new prenylated chromenoflavanone.

RESULTS AND DISCUSSION

Column chromatography of the acetone extract of the leaves and crystallization yielded (LA-1) white needles, $C_{25}H_{26}O_3$, mp 91-92°. The UV maxima at 222 and 272 nm classified it as an isoflavone or a flavanone [2]. With aqueous NaOH and conc. H_2SO_4 it gave orange-red and dark red colours, respectively, characteristic only of a flavanone. It is readily cleaved with hot aqueous NaOH to give a yellow chalcone, mp 113-115° [3].

The ¹HNMR spectrum of the compound showed evidence for the presence of a γ,γ -dimethylallyl unit and a 2,2-dimethylchromene ring. The singlet at δ 1.46 for six protons and the two doublets at δ 5.6 and 6.7 (J = 11 Hz) indicated a dimethylchromene ring. The two three proton singlets at $\delta 1.75$ and 1.80 and the doublet at $\delta 3.2$ (J = 7 Hz) for two protons and an olefinic proton triplet at δ 5.4 (J = 7 Hz) revealed the presence of a γ, γ dimethylallyl unit. Besides these a sharp singlet at δ 7.5 for five protons (unsubstituted phenyl) and the singlet at δ 7.7 for the C-5 proton suggested that the compound has a trisubstituted 'A' ring having the chromene as well as the dimethylallyl unit and the unsubstituted side phenyl. The presence of a two protons multiplet at $ca \delta 3.0$ and a one proton multiplet at ca $\delta 5.15$ clearly defined the compound as a flavanone. The NMR spectra of several prenylated chromeno-flavanoids have been reported [3-5] and the above values are in good agreement with them.

The mass spectrum of the flavanone showed an $[M]^+$ peak at m/z 374 (10%). Scheme 1 outlines the main pathways of fragmentation. The peak at m/z 319 could be accounted for by the loss of C_4H_7 . This is analogous to the

cleavage of the side chain in scandenone-4-methyl-ether [6]

[6]. The above results and biogenetic considerations [7] enable us to formulate the compound LA-1, as 6,7,2,2-dimethylchromeno-8,γ,γ-dimethylallyl flavanone.

EXPERIMENTAL

¹H NMR spectra were recorded at 100 MHz in CDCl₃ and DMSO-d₆ (TMS int. standard) and values are given in ppm. MS were recorded using a direct inlet system. The progress of CC (silica gel, Merck) was monitored by TLC on Merck silica gel HF₂₅₄ plates visualized by exposure to UV light.

Plant material. Fresh leaves of L. acida (Rich) were collected from the campus of Ahmedo Bello University, Zaria, Nigeria. A voucher specimen has been deposited in the Herbarium of the Botany Department, Aligarh Muslim University, Aligarh.

Extraction and isolation. Air dried leaves were extracted with Me_2CO under reflux. After concumular red. pres., the residue was macerated successively with hot hexane, C_6H_6 and EtOAc. The EtOAc extract was passed through a Sephadex LH 20 column for purification, the C_6H_6 -EtOAc eluates were then chromatographed on a silica gel 60 column without activation. The C_6H_6 -EtOAc (3:1) eluates yielded LA-1 (60 mg), mp 91-92°. 6,7,2,2-Dimethylchromeno-8, γ , γ -dimethylallyl flavanone, compound LA-I: UV λ_{\max}^{EtOH} nm: 222, 272; MS m/z: 374 [M]⁺ (10%), 359 (20), 319 (2), 255 (22), 227 (4), 55 (100); ¹H NMR: δ 1.46 (6H, s, >CMe2), 1.75, 1.8 (2×3H, s, >CMe2), 3.2

(2H, d,
$$J = 7$$
 Hz, $-CH_2$ -), 5.4 (1H, t, $=C$ -), 5.6, 6.7 (2 × 1H, d, H $J = 11$ Hz, $>C=O<$), δ 7.5 (5H, s, unsubstituted phenyl), 7.7 (1H, s, 5-H), 3.0 (2H, m, H-3), δ 5.15 (1H, m, H-2).

Acknowledgement—The authors are greatly indebted to Dr. M. R. Parthasarthy, Delhi University, Delhi, India for his constructive suggestions during the course of this study.

REFERENCES

- 1. Oliver, D. (1968) Flora of Tropical Africa, Vol. 1, p. 446.
- 2. Seikel, M. K. and Geissman, T. A. (1950) J. Am. Chem. Soc. 72,

964 Short Reports

Scheme 1. Mass spectral fragmentation of the flavanone from Lannea acida.

- Jurd, L. (1962) The Chemistry of Flavonoid Compounds (Geissman, T. A., ed.) pp. 107-155. Pergamon Press, Oxford.
- 4. Burrows, B. F. and Ollis, W. D. (1960) Proc. Chem. Soc. 177.
- 5. Pelter, A. and Stainton, P. (1966) J. Chem. Soc. (C) 701.
- 6. Wolform, M. L. and Wildi, B. (1951) J. Am. Chem. Soc. 73, 235.
- 7. Richards, J. H. and Hendrickson, J. B. (1966) *The Biosynthesis of Steroids*, *Terpenes and Acetogenins*, pp. 27-172. W. A. Benjamin, New York.